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Abstract:

Determining how El Niño and its impacts may change over the next ten to hundred years 

remains a difficult scientific challenge. Ocean-atmosphere Coupled General Circulation 

Models (CGCMs) are routinely used both to analyze El Niño mechanisms and 

teleconnections and to predict its evolution on a broad range of timescales, from seasonal 

to centennial. The ability to simulate El Niño as an emergent property of these models has 

largely improved over the last few years. Nevertheless, the diversity of model simulations 

of present-day El Niño indicate current limitations in our ability to model this climate 

phenomenon and anticipate changes in its characteristics. A review of the several factors 

that contribute to this diversity, as well as potential means to improve the simulation of El 

Niño, is presented.

Introduction

The term El Niño was originally used to denote the annual occurrence of a warm ocean current 

that flows southward along the west coast of Peru and Ecuador around Christmas. The term is 

now used to refer to the basin-scale warming in the tropical Pacific Ocean that takes place at 

intervals of 2 to 7 years and alternates with an opposite cold phase, called La Niña. The 

atmospheric manifestation of El Niño is the Southern Oscillation – a large-scale tropical east-

west seesaw in southern Pacific sea level surface pressure. Hence the phenomenon is now often 

called El Niño – Southern Oscillation or ENSO. Although ENSO originates in the tropical 

Pacific, it affects global climate and weather events such as drought/flooding and tropical storms. 

Therefore, understanding and predicting ENSO are crucial to both the scientific community and 
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the public (McPhaden et al. 2006).

The theoretical explanations of ENSO can be loosely grouped into two frameworks (Wang 

and Picaut 2004). In one framework, ENSO is a self-sustained and naturally oscillatory mode of 

the coupled ocean-atmosphere system. In the second, ENSO is a damped mode externally 

sustained by atmospheric random “noise” forcing. There are arguments to support both 

perspectives, and there are studies that suggest that the system may alternate between 

multidecadal epochs of more damped versus more freely oscillating dynamics (Fedorov and 

Philander 2000). In addition, El Niño involves interactions extending through different time 

scales with various climate phenomena such as the seasonal cycle, intra-seasonal oscillations or 

decadal oscillations. For example, ENSO is more sensitive to wind perturbations in spring and 

autumn, but less so in summer and winter (Burgers et al. 2005). Despite past efforts at reconciling 

early coarse-grid coupled model simulations of ENSO phenomena with theory and observations 

(Neelin 1991), and a number of recent theoretical, observational and modeling efforts to more 

fully understand ENSO, many intertwined issues regarding its dynamics, impacts and 

predictability remain unresolved.

We here report on advances made in recent years in modeling ENSO in coupled General 

Circulation Models (CGCMs), the challenges lying ahead and the related current scientific 

debate. The material presented draws on Chapters 8 and 10 of the fourth assessment report (AR4) 

of the Intergovernmental Panel on Climate Change (IPCC 2007, Meehl et al. 2007b) as well as 

community discussions initiated during an “ENSO in IPCC AR4” meeting held in May 2006 in 

Paris (http://ncas-climate.nerc.ac.uk/~ericg/Projects/ipcc_enso_06.html) and continued at the “3rd

Working Group on Numerical Experimentation (WGNE) Workshop on Systematic Errors in 

Climate and Numerical Weather Prediction Models” held in San Francisco in February 2007 
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(http://www-pcmdi.llnl.gov/wgne2007).

2. Current model performance

During the last decades, there has been steady progress in the simulation and seasonal 

prediction of ENSO and its global impacts using CGCMs (Delecluse et al. 1998, Latif et al. 2001, 

Davey et al. 2001, AchutaRao and Sperber 2002, Randall et al. 2007). More recently the 

parameterized physics have become more comprehensive, the horizontal and vertical resolutions 

have increased (Guilyardi et al., 2004, Roberts et al. 2008) and the application of ocean 

observations in initializing seasonal forecasts has become more sophisticated (Alves et al., 2004). 

These improvements in model formulation have led to a better representation of the spatial 

pattern of the sea surface temperature (SST) anomalies in the eastern Pacific and of ENSO’s 

periodicity (AchutaRao and Sperber, 2006). Compared to previous generation models, some of 

the third Coupled Model intercomparison Project (CMIP3) models used for the 4th assessment 

report (AR4) of the IPCC (Randall et al. 2007, Meehl al. 2007a) can now not only simulate the 

mean state and the annual cycle with some degree of fidelity but also the tropical interannual 

variability, without the use of the flux corrections, an artificial adjustment to correct model biases 

and used by earlier generations of CGCMs. Indeed, many CGCMs now exhibit a behavior that is 

qualitatively similar to that of the real-world ENSO – a considerable achievement given the 

complexity of the interactions involved.

Despite this progress, recent multi-model analyses show that serious systematic errors in the 

simulated background climate (time mean and annual cycle, see box 1) as well as in the simulated 

natural variability persist (van Oldenborgh et al. 2005, Guilyardi 2006, Capotondi et al. 2006, 
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Wittenberg et al. 2006). Several studies pointed out that these coupled models errors can often be 

traced back to the atmosphere component (Braconnot et al. 2007, L’Ecuyer and Stephens 2007, 

Sun et al. 2008, Guilyardi et al. 2008)

Coupled GCMs produce a variety of El Niño variability time scales (Fig. 3): model spectra 

range from very regular near-biennial oscillations to spectra that are close to the observed 2 to 7 

years. The observed seasonal phase locking – El Niño and La Niña anomalies tend to peak in 

boreal winter and are weakest in boreal spring – is often not captured by models, which either 

show little seasonal modulation or a phase locking to the wrong part of the annual cycle, although 

some models do show some tendency to have ENSO peaking in boreal winter (not shown). All 

these biases combine to generate errors in ENSO amplitude, period, irregularity, skewness or 

spatial patterns (Fig. 4). 

Even though CGCMs have common biases, they still exhibit a diversity of El Niño behavior 

that is well beyond the observed diversity of events. For instance, the modeled amplitude of El 

Niño ranges from less than half to more than double the observed amplitude (van Oldenborgh et 

al. 2005, AchutaRao & Sperber 2006, Guilyardi 2006) (Fig. 5). The complex interactions of the 

main biases described above (and with a number of likely others as discussed below) together 

with model structural diversity still make it difficult to clearly identify the origin of deficiencies 

in simulated ENSO. Nevertheless, it is likely that progress can be made. CGCMs do appear now 

to exhibit many of the key processes and interactions thought to control the ENSO cycle in the 

real world.
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Box 1 – Tropical Pacific mean state and annual cycle performance in CGCMs

Simulating the time-mean properties in the tropics has continually been a challenge for coupled 
GCMs. Though most models can internally generate the fundamental mechanisms that drive El 
Niño properties, most models simulate a mean zonal equatorial wind stress that is too strong and 
that has an annual amplitude that is also too strong (Fig.1 - see also Guilyardi 2006 and Lin 
2007a). This has profound effects on ENSO behavior in that it limits the regimes in which 
interannual anomalies can develop. Indeed, several studies have shown that a large amplitude of 
the seasonal cycle usually implies a weak El Niño and vice versa (Fedorov and Philander 2001, 
Guilyardi 2006). Similarly, the meridional extent of the wind variability, of importance for ENSO 
phase change, is too confined near the equator (Zelle et al. 2005, Capotondi et al. 2006, Capotondi 
2007). The “double Intertropical Convergence Zone (ITCZ)” problem, in which a symmetrization 
of the circulation across the equator leads to a spurious Southern Hemisphere ITCZ and is 
associated with excessive precipitation over much of the tropics, remains a major source of model 
error in simulating the annual cycle in the tropics (Lin 2007a), and can ultimately impact the 
fidelity of the simulated El Niño (Guilyardi et al. 2003, Sun et al. 2008). 

Similarly, there are still large differences in how the models reproduce the mean state of the 
tropical ocean, including the mean thermocline depth and slope along the equator (Fig. 2) and the 
structure of the equatorial currents (Brown and Fedorov 2008). Along the equator in the Pacific, 
the models have difficulty capturing the correct intensity and spatial structure of the East Pacific 
cold tongue. Often, the simulated cold tongue is too equatorially confined, extends too far to the 
west and is too cold (see Fig. 4 of Reichler and Kim 2008). These recurrent biases, already present 
in CMIP1 fifteen years ago, arise from numerous factors including overly strong trade winds, 
leading to increased cooling via oceanic upwelling, mixing, and latent heat flux to the atmosphere; 
a diffuse thermocline structure, leading to improper sensitivity of SST to anomalous upwelling 
and vertical mixing; insufficient surface and penetrating solar radiation, and weak ocean vertical 
mixing in the subtropics, leading to subsurface temperature errors along the equator; and weak 
tropical instability waves, resulting in too little meridional spreading of SST anomalies during 
cold events (Meehl et al. 2001, Luo et al. 2005, Wittenberg et al. 2006, Lin 2007a). There are also 
errors in the tropical Pacific seasonal cycle, both in SST and wind: many models exhibit an overly 
strong seasonal cycle in the east Pacific (Fig. 1) and/or a spurious semi-annual cycle, possibly tied 
to the lack of sufficient meridional asymmetry in the background state (Li and Philander 1996, 
Guilyardi 2006, Timmermann et al. 2007) and/or errors in the water vapor feedbacks (Wu et al. 
2008). The lack of marine stratocumulus clouds in the eastern part of the tropical Pacific is still a 
major issue in CGCMs (Lin 2007a), and, associated with a too weak coastal upwelling along the 
coast of Peru and Chili, leads to a warm bias in these regions. Nevertheless, the CMIP3 models 
show a clear improvement over previous generation models, as shown in AchutaRao and Sperber 
(2006) and Reichler and Kim (2008).
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3. ENSO feedbacks

Theory has established that ENSO results from the interaction of a number of feedbacks, 

either amplifying or damping the associated interannual anomalies (Wang and Picaut 2004). 

ENSO involves the positive ocean-atmosphere feedback of Bjerknes (1969) that culminates with 

warm or cold SST anomalies in the equatorial eastern and central Pacific. Once an event is 

underway, negative feedbacks are also required to terminate the growth of warm or cold SST 

anomalies. Theoretical work on ENSO during the past decades has proposed four major negative 

feedbacks: wave reflection at the ocean western boundary (Suarez and Schopf 1988; Battisti and 

Hirst 1989), a discharge process due to Sverdrup transport (Jin 1997), a western Pacific wind-

forced Kelvin wave of opposite sign (Weisberg and Wang 1997), and anomalous zonal advection 

(Picaut et al. 1997). These negative feedbacks may work in varying combinations to terminate El 

Niño or La Niña (Wang 2001).

Starting from the linearized SST equation, Jin et al. (2006) derived a coupled stability index 

(referred to the BJ-index) that details ocean-atmosphere feedbacks. They identified five different 

feedbacks: the mean advection and upwelling feedback (always negative), the thermal damping 

rate (due to surface heat fluxes and also negative), the zonal advection feedback (positive), the 

Ekman pumping feedback (positive) and the thermocline feedback (positive) (see Burgers et al. 

2005 and Jin et al. 2006 for details). Hence El Niño and La Niña will develop only if the sum of 

these feedbacks is positive or if the system is constantly forced by external perturbations. To the 

extent that this theoretical framework also applies to complex models, evaluating these feedbacks 

in CGCMs may help to illuminate the sources of errors. For instance, most models underestimate 

the thermocline feedback, i.e. the effect of thermocline depth variations on SST (van Oldenborgh 

et al. 2005), as the well as the air-sea coupling strength (involved in the Bjerknes feedback), 
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which measures the wind response to SST anomalies (Guilyardi 2006) and is a main contributor 

to the last three positive feedbacks of the BJ index. This is compensated by too little thermal 

damping, mainly due to reduced cloud-shading feedback (Philip and van Oldenborgh, 2006, Sun 

et al. 2008, Guilyardi et al. 2008). 

4. Non-linearities and the role of tropical multi-scale interactions

ENSO cannot be viewed in isolation of other space and time scales in the tropical Pacific. A 

body of recent studies strongly suggests that El Niño also interacts with higher frequency 

processes (like intra-seasonal oscillations, Kessler 2002, Fedorov 2002, Fedorov et al 2003, 

Lengaigne et al. 2004a,b) and with the mean state and seasonal cycle of the tropical Pacific (Jin et 

al. 1994, Tziperman et al. 1994, 1997, Guilyardi 2006). CGCMs have a number of biases in these 

other space and time scales which can impede on the fidelity of the modeled ENSO (see Lin et al. 

2006). Nonlinear processes are required to transfer energy between fluctuations at different space 

and time scales. The main nonlinear processes relevant to ENSO and highlighted by the above 

studies include atmospheric convection, evaporation and cloud feedbacks, wind response to SST 

anomalies, zonal advection and thermocline-surface coupling. Non-linearity can also arise from 

the small-scale coupling between the ocean and the atmosphere, like Tropical Instability Waves 

(TIW) in the east Pacific (Pezzi et al. 2004, Jochum and Murtugudde 2006, An 2008a, Norton et 

al. 2008). In models with high enough ocean resolution to permit such waves (and other small 

ocean structures, like equatorial and eastern-boundary upwelling, or western boundary currents) 

there is evidence that the resolution of the atmosphere numerical grid also needs to be increased 

to resolve the coupling of these small ocean features, which have sizes that are typically less than 

100 km (i.e. 1°). This may partly explain the improved simulation of ENSO when the atmosphere 
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numerical grid reaches this resolution (Guilyardi et al. 2004, Roberts et al. 2008).

Non-linear interactions have further been proposed to explained the observed positive 

skewness of ENSO, i.e. the fact the El Niño events have a larger amplitude than La Niña 

situations (Burgers and Stephenson 1999, Hannachi et al. 2003, An and Jin 2004, Monahan and 

Dai 2004), a property that can also evolve at decadal time scales (An 2008b). Several studies 

have looked into reproducing the observed skewness in simple ENSO models (Lin and Derome

2004, An et al. 2005a,b, Philip and van Oldenborgh 2007) and analyzing it in CGCMs (Hannachi 

et al. 2003, van Oldenborgh et al. 2005, Yeh and Kirtman 2007). Unlike observations, most 

GCMs exhibit a linear ENSO, with SST skewness near zero in the tropical Pacific (Hannachi al. 

2001, van Oldenborgh al. 2005). This could conceivably render them less sensitive than the real 

world to changes in climate, even though other studies attribute the positive skewness of ENSO 

to other sources than non-linearity, for instance the superposition of ENSO, decadal variations, 

and global warming trends (Lau and Weng 1999). 

5. Atmosphere model biases versus ocean model biases

A common theme emerging from CGCM studies is the role of atmospheric dynamics and 

feedbacks in determining model El Niño characteristics. Mechanistic models tend to parameterize 

the atmospheric component of El Niño in terms of simple concepts, such as a constant value for 

the coupling strength or for the surface heat flux damping of SST anomalies. Yet studies such as 

Schneider (2002), Guilyardi et al. (2004) and Toniazzo et al. (2008) have revealed a strong 

diversity of behavior in models in which either atmospheric models or even just the parameters in 

a single atmospheric model are varied. The ocean GCMs typically used in IPCC class CGCMs 
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also play a role in ENSO systematic errors – for  example, the representation of turbulent mixing 

remains a major challenge and strongly influences thermocline properties – but appear to play a 

lesser role than atmospheric GCMs (Guilyardi et al. 2004, 2008). Nevertheless, simulations 

similar to those reported in Toniazzo et al. (2008) but in which ocean rather than atmosphere 

parameters are varied in the HadCM3 model, do show variations in ENSO behavior.

Whether further improvements in ENSO simulation with coupled GCMs depends more on 

improving the atmospheric or oceanic component of CGCMs will be answered over time. 

Properties of atmospheric GCMs appear to be critical, perhaps because their sensitivity, 

complexity and non-linearity, can produce larger biases that impose limitations on ENSO 

properties and feedbacks. For example, Lin (2007a) has shown that several shortcomings of the 

coupled CMIP3 models stemmed from the atmosphere component of these models. In view of the 

high sensitivity of CGCMs to the atmospheric convection scheme (Kim et al. 2008, Neale et al. 

2008, Guilyardi et al. 2008), more research is needed on the role of thermodynamical processes 

and feedbacks. Bony and Dufresne (2005) also analyzed the cloud radiative feedbacks in 

convection/subsidence dynamical regimes in the CMIP3 models and concluded that the 

simulation of marine boundary-layer clouds is at the heart of tropical cloud feedback 

uncertainties in current CGCMs. These marine boundary-layer clouds occur in the eastern 

tropical Pacific, a key region for El Niño amplification, and biases in their representation can also 

contribute to the simulated ENSO diversity (Guilyardi et al. 2008). 

6. ENSO in a changing climate

Most (but not all) IPCC AR4 models are qualitatively consistent in their projections of mean

changes over the tropical Pacific. The SST warms more along the equator than off the equator, 
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and a reduced east-west SST gradient (Fig. 6) is associated with a weakened Walker circulation 

and reduced trade winds (Hansen et al. 2006, Fedorov et al. 2006, Vecchi et al. 2006, 2008). Such 

changes in the mean state can influence the ENSO-related processes and feedbacks and have the 

potential to modify ENSO properties. For example, studies show that a more stable ENSO is less 

sensitive to changes in the background state than when it is closer to instability (Zelle et al., 

2005). Atmosphere deep convection triggering is also highly dependant on the mean SST 

distribution, and associated heat flux feedbacks may change. Nevertheless, van Oldenborgh et al. 

(2005) noted that if only the six “best” models for ENSO are considered, the tendency for 

reduced mean east-west gradient is much less obvious than if all models are considered.

However, and as seen from Fig. 6 (Fig. 10.16 of the IPCC AR4 report), which displays the 

ratio of ENSO variability between the current climate and the last 50 years of the SRES A2 

experiments (2051–2100) as a function of the background change, models are inconsistent with 

respect to their projections of change in ENSO amplitude (see also van Oldenborgh et al. 2005, 

Merryfield 2006, Guilyardi 2006) even in very high CO2 scenarios (Fig. 5). While some models 

show an increase in ENSO variability in response to greenhouse gas increases, others do not 

exhibit any detectable change while still others show a decrease in variability. 

Discerning whether any future changes in ENSO amplitude are due to external forcing or are 

simply due to internal longer-term variation is complicated by significant decadal fluctuations 

both in observations and in long control integrations (Knutson et al, 1997, AchutaRao and 

Sperber 2002, Yukimoto and Kitamura 2003, Yeh et al. 2004, Yeh and Kirtman 2004, An et al. 

2005, Meehl et al. 2006, Lin 2007b). Nevertheless, changes of ENSO variability, where they can 

be detected above these large natural variations, are highly model dependent, even if extreme 

scenarios are analyzed (4xCO2). Hence, even though all models show continued ENSO 
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variability in the future no matter what the change of average background conditions, there is no 

consistent indication at this time of discernible changes in amplitude or frequency for the 21st

century (Meehl et al. 2007b). Similarly, large model differences in the skewness of the variability 

limits the assessment of the future relative strength of El Niño and La Niña events (van 

Oldenborgh et al. 2005). Because ENSO is the dominant mode of climate variability at 

interannual timescales, the lack of consistency in the model predictions of the response of ENSO 

to global warming currently limits our confidence in using these predictions to address adaptive 

societal concerns, such as regional impacts or extremes (Joseph and Nigam 2006, Power et al. 

2006). Nevertheless, paleo-evidence that ENSO may have been quite different in the past (e.g. 

Tudhope et al. 2001, Cobb et al. 2003) indicates that there is a risk ENSO and the associated 

teleconnections (see for instance Meehl et al. 2007c on the shift of ENSO teleconnections in 

North America) might be quite different in the future: a fact that is available to those assessing 

mitigation options.

A better understanding of the sensitivity of ENSO to changes in processes and feedbacks will 

help explain these differences, possibly leading to more confident projections. For instance, the 

disagreement among the various IPCC AR4 models regarding future changes in ENSO does not 

rule out that a subset of models can show a common ENSO response to climate change. Guilyardi 

(2006) showed that among those models that best reproduced the diversity of the observed 

ENSO, there was a significant trend towards increased El Niño amplitude in high CO2 scenarios. 

Hence, to improve decadal to centennial projections, process and feedback diagnostics are needed 

to limit the subset of models to those that are more consistent with the real world. Even if models 

do not predict significant changes in El Niño statistics in the future (e.g. amplitude or frequency), 

the relative balance of feedbacks and teleconnections (and the associated impacts) during ENSO 
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could evolve (Philip and van Oldenborgh, 2006), perhaps altering ENSO predictability. 

The characteristics of ENSO in past climates, as provided by paleoclimate records and coupled 

model simulations, can also help constrain models for future climate changes (see Chen et al. 

2004, Zheng et al. 2008 or Brown et al. 2007, who address the mid Holocene ENSO weakening 

as a test of a coupled model). For instance, recently obtained temperature records (derived from 

tropical deep-sea cores) suggest that in the early Pliocene, approximately 3 to 5 million years ago, 

the tropics were characterized by a persistent warm state similar to the peak of El Niño (Fedorov 

et al. 2006). During this time interval, and possibly before, the proxy data may be interpreted as 

showing a significantly reduced or virtually non-existent zonal SST gradient along the equator 

with therefore no possibility for ENSO development. The climate of the early Pliocene can be 

considered as a partial analogue to the contemporary global warming, since external factors that 

control climate were similar to what they are today. The current generation of climate models do 

not simulate a persistent warm state even when forced with concentrations of carbon dioxide an 

order of magnitude larger than the current values (e.g. Haywood et al., 2007). If the paleo-data 

available at present are indeed representative of such a state, then problems in the ability of 

models to simulate perennial warm conditions could indicate deficiencies in the models. More 

study is needed on both the modeling and observational aspects.

Finally, there are new additional questions on the horizon as full earth system models mature -

how might ENSO's impacts on fires, dust, ecosystems, agriculture, and fisheries change in the 

future? How might evolving ocean chlorophyll concentrations affect oceanic solar penetration 

(Timmerman and Jin 2002, Lengaigne et al. 2007), the equatorial thermocline, and SST through 

the ENSO cycle and in response to climate change? Might the ENSO-CO2 cycle help to constrain 
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global carbon-cycle feedbacks? Making progress on these issues first requires a better 

understanding of the physical and dynamical properties of ENSO in CGCMs.

7. What observations do ENSO modelers need?

Until the observed relationships describing the ENSO feedbacks are better constrained, 

modelers will continue to struggle to get the right balance of processes for ENSO. This points to 

a key need of the modeling community: a sustained, multi-decadal global climate observing 

system for both the upper ocean and lower atmosphere, with attention given to maintaining 

continuity and diversity of observations. The key variables that must be constrained include the 

SST, precipitation and atmospheric convection, surface fluxes (wind stress, air-sea heat flux), 

subsurface thermal and haline structure of the upper ocean, and upper ocean currents. A sample 

of some leading ENSO-relevant observational products is given in Wittenberg et al. (2006). In 

addition, observations of chemical and biological variables will be required as Earth-system 

models mature.

Investment in the future observing system is essential for continued progress in modeling for 

coming decades. However, to address the deficiencies of today's models, we cannot afford to wait 

for future observations. To sample the real-world natural variability of ENSO and its response to 

slow changes in climate, it is also essential to (1) continually reanalyze existing observations 

using state-of-the-art atmospheric, oceanic, and coupled models, to ensure that the best 

observational guidance is available to modelers in a convenient form; (2) recover missing 

historical observations, as in the Global Oceanographic Data Archaeology and Rescue Project 
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(GODAR9); (3) develop merged paleoclimate records, based on corals and other proxies, which 

have been verified against the historical record and extended as far as possible into the deep past. 

For all of these efforts, it is essential to produce not only the best estimate of the observed 

quantity, but also a realistic representation of the associated uncertainty.

Process-oriented, regional-scale observational field campaigns (such as SPICE10 or 

VOCALS11) are needed as they will undoubtedly fuel model improvements in the long term. But 

the lack of historical long-term, sustained, basin-scale, high-quality observations (in contrast to 

today’s TAO/TRITON (Tropical Atmosphere Ocean Project, http://www.pmel.noaa.gov/tao/, 

McPhaden et al. 1998) and RAMA moorings (Research Moored Array for African-Asian-

Australian Monsoon, McPhaden et al. 2008), ARGO automatic floats 

(http://www.argo.ucsd.edu), JASON altimetry (http://topex-www.jpl.nasa.gov/) and the A-Train 

constellation of satellites (Stephens et al. 2002)) to constrain models is perhaps the biggest 

impediment to winnowing the wide variety of ENSO simulations among today's CGCMs..

8. The case for new ENSO modeling strategies

How good do ENSO models need to be? Indeed, the question that scientists face in making 

climate projections or predictions is one of model credibility (see for instance Räisänen 2007). In 

many prediction problems, seasonal climate forecasting of El Niño being a prime example, it is 

possible to verify predictions after the fact. This becomes practically very difficult in the case of 

the ENSO response to climate change, as the signal-to-noise ratio is very small due to strong 

interannual (and decadal) variability. Nor can scientists and policymakers wait until the climate 

  
9 http://www.nodc.noaa.gov/General/NODC-dataexch/NODC-godar.html
10 http://www.ird.nc/UR65/SPICE/
11 http://www.eol.ucar.edu/projects/vocals/



16

change has already occurred for verification scores. Thus an “expert assessment” is usually 

required, based on a model's ability to reproduce aspects of present day and/or past conditions. 

New modeling strategies to provide such assessments can now be envisioned, thanks to the rise 

of multi-model ensembles and to the use of seasonal forecast techniques.

A multi-model ensemble allows both an assessment of the consistency of the predictions of 

different models, and an overall (probabilistic) forecast to be made, taking into account the 

spread of the model predictions. Multi-model ensembles of seasonal forecasts or projections 

almost always outperform the best models’ skill (Palmer et al. 2004, Rahmstorf et al. 2007). A 

major factor in this is that the multi-model ensemble samples some of the model formulation 

uncertainty, which, as described above, is quite large for ENSO.  When it comes to predicting the 

evolution of ENSO for a specific year, this "averaging out" of model error can be quite effective, 

perhaps because the impact of a particular model's errors is in many situations equally likely to 

lead to an over- or under-estimate of the actual SST. For statements on the expected future 

increase/decrease of ENSO variability, however, there seems no reason to trust the "average" 

answer as being close to the truth. Indeed, given the evident sensitivity of the results and the 

imperfections of even the best models, we cannot be confident that the outcome will even lie 

within the range predicted by today's models. Coordinated multi-model experiments (using 

several CGCMs as for the CMIP3 data base or the same model with varying parameters as in 

Toniazzo et al. 2008) do however allow the exploration of common sensitivities – or lack thereof. 

For this reason, maintaining a diversity of models (both within the IPCC class, and through the 

complexity hierarchy of toy models, intermediate models, and hybrid statistical/dynamical 

models) is very important.

Seasonal forecasts can also provide a powerful test for IPCC-class CGCMs (Palmer et al. 
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2008). The classical analysis of ENSO in IPCC integrations (either basic statistics or more 

advanced evaluation of feedbacks) usually concentrates on the long (at least multi-decadal) time 

series statistics needed to compute robust signals. Yet, this strategy cannot fully explain how the 

model’s errors (in the mean state but also in the feedbacks) were generated in the first place. This 

is an issue as the initial model errors result in a balance (a new mean state and annual cycle) that 

then becomes difficult to link to particular model deficiencies (such as arising from model 

parameterizations). Hence there is a need for an experimental framework which would focus on 

the initial adjustment of these models. Such a framework can be provided by the seasonal 

forecast approach. 

We here encourage the use of such an approach to initialize the ocean and atmosphere state of 

a coupled model as close as possible to the observed state and launch “forecasts” of several 

months (up to a year) at regular intervals during the recent “well observed” decades. These 

simulations can provide rich diagnostic possibilities, to see how (and sometimes why) coupled 

errors develop in the tropics, in the context of detailed observations. For instance, they provide a 

good configuration to look at cloud-convection-radiation-SST interactions, in conditions specific 

to a given year, allowing detailed comparison with observations such as satellite data. In an era in 

which model errors are very large, then comparison of any short-term integration with an 

observed “climatology” would show the large errors adequately, regardless of which years were 

chosen for comparison. But as short-term coupled model errors become comparable to observed 

interannual variability, proper referencing of the model integrations to specific observed years 

becomes important to make further progress.

By carefully analyzing the models’ departure from the observed state, one should be able to 
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more precisely identify the parameterization(s) responsible for any drift. For example, if a 

forecast is launched before an observed El Niño event and the model fails to reproduce the event, 

a careful analysis might show that the surface heat flux damping feedbacks were too strong in the 

model to allow the event to develop, or if the event has a too weak amplitude, that the wind 

response to the SST anomaly was too confined near the equator or that the ocean dissipation was 

too strong to sustain intra-seasonal signals (Woolnough et al. 2007).

Such simulations are computationally cheap to perform and allow more possibilities for testing 

than multi-century simulations. For instance, an experiment using 6 month hindcasts with two 

starts per year, looking at 5 different situations (e.g. 1993/1995/1997/1999/2001) and using 5 

member ensembles requires only 25 years of integration. A more comprehensive assessment of 

the seasonal forecast skill of a climate model can be made via participation in the Climate-system 

Historical Forecast Project (CHFP)12 organized by the CLIVAR Working Group on Seasonal to 

Interannual Prediction (WGSIP) for the World Climate Research Program (WCRP).

There are still several questions in the set up of these simulations that will need to be 

addressed, like initialization or drift interpretation. A simple initialization has to be proposed for 

the IPCC groups that do not have an ocean data assimilation system in place. One possibility is to 

“nudge” a coupled simulation with observed wind stress and/or SST (Keenlyside et al. 2005, Luo 

et al. 2008). Recent work has shown that just nudging the wind stress in a coupled model allows a 

good representation of the interannual SST (Fig. 7, Joly et al. 2008). Nevertheless, even if a 

model could produce a completely accurate prediction of ENSO (within the constraints of chaotic 

error growth) this is not a sufficient condition for a model to accurately simulate ENSO under 

climate change. Even if the processes and feedbacks that occur on seasonal time-scales do not 
  

12 http://www.clivar.org/organization/wgsip/chfp/chfp.php
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necessarily form the complete set of climate change processes and feedbacks, improving them in 

models will reap many benefits.

9. Devising a suite of ENSO metrics and diagnostics

It is important to assess ENSO characteristics in terms of theoretical/mechanistic 

understanding of the phenomena, not just looking at local statistics (e.g. Niño 3 SST 

anomalies13), which may have the correct value for the wrong reasons (i.e. as a result of bias 

compensation, Guilyardi et al. 2008). Moreover, multi-model analyses should rely upon common 

diagnostics. The definition of a set of “metrics” to assess a phenomenon can have great value to 

the wider community engaged in model development and/or analysis. Metrics are now under 

discussion in preparation for future CMIPs (Gleckler et al. 2008), and the CLIVAR Pacific 

Panel14 is charged with devising metrics for ENSO and for the wider tropical Pacific climate. 

Here we use the term “metric” as a measure of the “distance” of the model to some observational 

reference, usually computed as a single scalar value (Gleckler et al. 2008) while other more 

complex or qualitative analyses where observations do not provide an easy reference are called 

“diagnostics”. The intent is not to reduce evaluation of models to single numbers, except in the 

specific example of producing likelihood weights in probabilistic prediction (in which case such 

metrics should test all the relevant physical process involved in the prediction problem e.g. 

Collins et al., 2005; Collins 2007). Rather a suite of metrics and diagnostics, which addresses a 

range of physical processes and impacts of interest to various experts and stakeholders, should be 

applied. 

  
13 The Niño 3 region spans 5oS to 5oN and 150oW to 90oW in the east Pacific, see Fig. 4. 
14 http://www.clivar.org/organization/pacific/pacific.php
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A first step is to distinguish the metrics from the diagnostics. Metrics require a set of well 

observed references and should be concise, physically informative, societally relevant, and easy 

to understand, compute, and compare. A few examples are given in Box 2. When summarized by 

a single scalar the metrics are amenable to inter-model Taylor (2001) diagrams. The more 

sophisticated theory-based diagnostics are less easily constrained by observations. Nevertheless 

by helping to bridge the gap between our theoretical understanding of ENSO and its 

representation in CGCMs (Fedorov et al. 2003, Held 2005), this second category holds the most 

promise in helping scientists to understand the modeled errors in CGCMs, as already 

demonstrated by several recent studies (Mechoso et al. 2003, Capotondi et al. 2006, Philip and 

van Oldenborgh 2006, Jin et al. 2006, Fedorov 2007, Dewitte et al. 2007, Brown and Fedorov 

2008, Brown et al. 2008).

Among the key metrics to measure and constrain with observations are the feedbacks between 

the ocean and atmosphere, which give rise to ENSO and help govern its behavior. A list of

leading concepts from ENSO theory that have guided recent studies could include: the wind 

response to SST anomalies, thermocline and zonal advective feedbacks, wind coupling strength 

and pattern, surface heat flux damping, oceanic adjustment delay time and stochastic forcing. For 

instance, the coupling strength, which measures the intensity of the Bjerknes feedback, can be 

quantified using a linear regression of the wind stress anomaly field onto the Niño 3 SST 

anomaly index (Guilyardi 2006). Similarly, the damping of SST anomalies by surface heat fluxes 

can be assessed by regressing the net heat flux onto the Niño 3 SST anomaly index, or 

alternatively onto the co-located SST anomaly (Lin 2007a, Sun et al. 2006, 2008, Guilyardi et al. 

2008). These can further be assembled in the common framework of the BJ Index which 

measures the amplification/damping rate of ENSO (Jin et al. 2006). The efficiency of the energy 
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transfer from the winds to the thermocline is another important parameter that can affect the 

properties of ENSO (Brown et al. 2008).

There are two key challenges in devising the right blend of metrics and diagnostics. First, the 

theoretical understanding of all aspects of ENSO evolution is still incomplete – ENSO is a multi-

mechanism phenomenon and different mechanisms may work in varying combinations to 

produce and terminate a particular El Niño event (Wang 2001). Second the difficulty of 

constraining all the relevant feedbacks with observations, due to the brief, nonstationary, and 

partial observations of the real world still exists, despite considerable recent achievements in 

observational programs. For example there is large uncertainty among satellite data, in situ

measurements and re-analysis products for feedbacks as basic to ENSO as the ocean-atmosphere 

coupling strength (Wittenberg 2004) or the cloud radiative feedbacks (Cronin et al. 2001). Nor is 

it clear how long we must run models and observe nature to get robust statistics for comparison 

(due to large decadal variations as discussed above), or what metrics are most robust. Hence, an 

evaluation of the uncertainties in these metrics and diagnostics has to be included, in order to 

prevent assigning large weights to small differences in the performance of models. Nevertheless, 

given the large errors still exhibited by most current CGCMS, process and feedback based 

metrics and diagnostics do provide an objective way to downweight the results from obviously 

unrealistic models, and could help focus modeling effort in improving the realism of ENSO while 

maintaining a healthy model diversity.

As CGCM developers and users, we envision the ENSO metrics and diagnostics to be 

presented on a CLIVAR web site, including pathways to recommended observational datasets (in 
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an easy-to-use gridded format like OPeNDAP15 and following community agreed metadata 

standards like NetCDF16 and those developed for the next IPCC, e.g. http://metaforclimate.eu or 

http://www.earthsystemcurator.org/ ) and a repository of scripts to generate both the diagnostics 

for the observations and model data, and "distance" metrics between those diagnostics.

  
15 http://opendap.org
16 http://www.unidata.ucar.edu/software/netcdf

Box 2 – Examples of ENSO related metrics

The following are a few examples of ENSO metrics :

• Mean and seasonal spatial root-mean-square errors, computed in specific regions (e.g.. in 
the entire tropics, east Pacific, warm pool, equatorial wave guide, etc.) and for key fields: 
SST, precipitation, wind stress, cloudiness, etc. (see Gleckler et al. 2008).

• For the classical ENSO related SST time series, averaged in specific regions (Niño 3, Niño 
4, …), the corresponding metrics (in order of increasing sophistication) can be:

- climatological annual mean (a single scalar)
- climatological annual cycle (12 months) leading to the climatological standard 

deviation
- time series statistics: anomaly standard deviation, skewness, phase locking, 

autocorrelation
- wavelet decomposition leading to time-mean spectrum, ENSO modulation
- correlation with other time series (e.g. Niño 4 zonal wind stress)

• Warm water volume, which measures the state of the heat recharge in the equatorial Pacific 
(Meinen and McPhaden 2001, http://www.pmel.noaa.gov/tao/elnino/wwv/).

• Trans-Niño index lag correlated with Niño 3 SST anomalies, which provides information 
about the type of El Niño event (Trenberth and Stepaniak 2001).

• Intra-seasonal activity as proposed by the MJO CLIVAR workgroup 
(http://climate.snu.ac.kr/mjo_metrics/index.htm).

The definition of a more complete set of metrics is underway in the CLIVAR Pacific Panel.
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Conclusions

The IPCC AR4 projections offer a wide range of possibilities regarding what will happen to 

ENSO in the future. However, there is no indication of a complete disappearance of ENSO 

variability over the next century nor an explosion of large ENSO events. Most of the CMIP3 

models can now produce a reasonable climatology and ENSO without flux adjustments, 

enhancing their physical credibility for simulating ENSO and its response to climate changes. 

The credibility of these models could be further enhanced by improving the simulations of 20th-

century ENSO statistics, and subjecting the models both to seasonal forecast and paleoclimate 

tests to assess their ENSO sensitivities. To constrain the physics and behavior of ENSO models, 

the climate community must:

• improve the quality and utility of historical and paleoclimate records;

• maintain the present ENSO observing system into the future;

• continue to freely exchange model output using common formats so that intercomparison 

studies can be easily performed;

• isolate the main sources of error for the models, guided by theory, observations, and 

rigorous evaluation of the models, including tests in seasonal forecast mode;

• better understand the physical processes involved in the response of ENSO to climate 

change and link those to the main sources of model error; and

• better represent unresolved processes and coupled feedbacks.

Defining a set of metrics will help scientists assess the quality of ENSO simulations, and 

easily intercompare different models in a way that integrates both observations and theory. This 

will also allow non-ENSO specialists and the wider impacts community using CGCM outputs to 
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better evaluate the ENSO processes and feedbacks relevant for their own particular study. Finally 

it should also help decide how to best invest limited computer and model-development resources. 

As the models are improved, there is hope for better ENSO simulations and more reliable 

seasonal forecasts and climate projections. 
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List of Figures

Figure 1 – Mean zonal wind stress (squares) and annual cycle amplitude (bars) in the central-
western Pacific (Niño 4 region, see Fig. 4) for the 20th century simulations of the IPCC AR4. 
Observations (to the left) are taken from ERS (1992-1998) and corrected by in situ TAO array 
(the ERA40 1950-200 average is -0.034 N.m-2). Units are N.m-2.

Figure 2 – Mean depth of the equatorial thermocline and mean thermocline slope along the 
equator as simulated in a number of ocean-only models (blue), data assimilation models (black), 
and coupled models (red). The thermocline slope is defined as the normalized difference between 
thermocline depth at 180oE and 100oW, where an appropriate isopycnal surface was chosen for 
each individual model. The thermocline depth corresponds to maximum vertical density gradient
along the equator. Note the large differences in the mean thermocline depth and, especially, 
thermocline slope in the models. After Brown and Fedorov (2008).

Figure 3 – Niño 3 SST anomaly spectra for IPCC AR4 models in pre-industrial conditions. a) 
original figure from AchutaRao and Sperber (2006); b) “eye-ball” selection of 6 closest to 
observed (note that MRI is the only flux-adjusted of the 6).

Figure 4 – SST standard deviation (oC) for 100 years of monthly data for models in Fig. 3b. 
Observations are taken from HadISST1.1 (1900-1999). The location of the Niño regions 
discussed in the text is also shown.

Figure 5 – ENSO amplitude in 23 coupled CGCMs, including those used for the IPCC AR4, as 
measured by the Niño3 SST anomaly standard deviation in pre-industrial simulations (blue bars) 
and equilibrated 2xCO2 scenarios (red bars).

Figure 6 - Mean state change in average tropical Pacific SSTs and change in El Niño variability 
simulated by AOGCMs (adapted from IPCC 2007, Meehl et al. 2007b). The mean state change 
(horizontal axis) is computed over the area 10°S to 10°N, 120°E to 80°W (reproduced from 
Yamaguchi and Noda, 2006). The change in El Niño variability (vertical axis) is denoted by the 
ratio of the ENSO amplitude between the current climate and the last 50 years of the SRES A2 
experiments (2051–2100), except for FGOALS-g1.0 and MIROC3.2(hires), for which the SRES 
A1B was used, and UKMO-HadGEM1 for which the 1% yr–1 CO2 increase climate change 
experiment was used, in the region 30°S to 30°N, 30°E to 60°W (reproduced from van 
Oldenborgh et al., 2005). Error bars indicate the 95% confidence interval.

Figure 7 – Evolution of the Niño 3.4 (170oW-110oW, 5oN-5oS)) interannual SST anomaly for: 
the HadISST1.1 observations (black), a simulation in which the tropical ERA40 wind stress has 
been nudged into the CNRM-CM3 IPCC coupled model (pink), a similar simulation with a global 
nudging of the wind stress (orange) and a simulation with imposed ERA40 climatology (blue). 
After Joly et al. (2008).



32

Figure 1 – Mean zonal wind stress (squares) and annual cycle amplitude (bars) in the central-
western Pacific (Niño 4 region, see Fig. 4) for the 20th century simulations of the IPCC AR4. 
Observations (to the left) are taken from ERS (1992-1998) and corrected by in situ TAO array 
(the ERA40 1950-200 average is -0.034 N.m-2). Units are N.m-2.
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Figure 2 – Mean depth of the equatorial thermocline and mean thermocline slope along the 
equator as simulated in a number of ocean-only models (blue), data assimilation models (black), 
and coupled models (red). The thermocline slope is defined as the normalized difference between 
thermocline depth at 180oE and 100oW, where an appropriate isopycnal surface was chosen for 
each individual model. The thermocline depth corresponds to maximum vertical density gradient
along the equator. Note the large differences in the mean thermocline depth and, especially, 
thermocline slope in the models. After Brown and Fedorov (2008).
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Figure 3 – Niño 3 SST anomaly spectra for IPCC AR4 models in pre-industrial conditions. a) 
original figure from AchutaRao and Sperber (2006); b) “eye-ball” selection of 6 closest to 
observed (note that MRI is the only flux-adjusted of the 6).
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Figure 4 – SST standard deviation (oC) for 100 years of monthly data for models in Fig. 3b. 
Observations are taken from HadISST1.1 (1900-1999). The location of the Niño regions 
discussed in the text is also shown.
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Figure 5 – ENSO amplitude in 23 coupled CGCMs, including those used for the IPCC AR4, as 
measured by the Niño3 SST anomaly standard deviation in pre-industrial simulations (blue bars) 
and equilibrated 2xCO2 scenarios (red bars). 
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Figure 6 - Mean state change in average tropical Pacific SSTs and change in El Niño variability 
simulated by AOGCMs (adapted from IPCC 2007, Meehl et al. 2007b). The mean state change 
(horizontal axis) is computed over the area 10°S to 10°N, 120°E to 80°W (reproduced from 
Yamaguchi and Noda, 2006). The change in El Niño variability (vertical axis) is denoted by the 
ratio of the ENSO amplitude between the current climate and the last 50 years of the SRES A2 
experiments (2051–2100), except for FGOALS-g1.0 and MIROC3.2(hires), for which the SRES 
A1B was used, and UKMO-HadGEM1 for which the 1% yr–1 CO2 increase climate change 
experiment was used, in the region 30°S to 30°N, 30°E to 60°W (reproduced from van 
Oldenborgh et al., 2005). Error bars indicate the 95% confidence interval. 
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Figure 7 – Evolution of the Niño 3.4 (170oW-120oW, 5oN-5oS)) interannual SST anomaly for: 
the HadISST1.1 observations (black), a simulation in which the tropical ERA40 wind stress has 
been nudged into the CNRM-CM3 IPCC coupled model (pink), a similar simulation with a global 
nudging of the wind stress (orange) and a simulation with imposed ERA40 climatology (blue). 
After Joly et al. (2008).




